
Push–pull farming systems
John A Pickett1, Christine M Woodcock1, Charles AO Midega2 and
Zeyaur R Khan2

Available online at www.sciencedirect.com

ScienceDirect
Farming systems for pest control, based on the stimulo-

deterrent diversionary strategy or push–pull system, have

become an important target for sustainable intensification of

food production. A prominent example is push–pull developed

in sub-Saharan Africa using a combination of companion plants

delivering semiochemicals, as plant secondary metabolites, for

smallholder farming cereal production, initially against

lepidopterous stem borers. Opportunities are being developed

for other regions and farming ecosystems. New semiochemical

tools and delivery systems, including GM, are being

incorporated to exploit further opportunities for mainstream

arable farming systems. By delivering the push and pull effects

as secondary metabolites, for example, (E)-4,8-dimethyl-1,3,7-

nonatriene repelling pests and attracting beneficial insects,

problems of high volatility and instability are overcome and

compounds are produced when and where required.
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Introduction
All farming systems require crop protection technologies

for predictable and economic food production. Pesticides

currently serve us well, with no convincing evidence for

legally registered pesticides causing problems of human

health or environmental impact [1�]. In terms of risk

analysis, risks associated with use of pesticides have been

extremely low for some time [2]. However, for sustainable

pest management, seasonal inputs requiring external
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production and mechanical application need to be

replaced by approaches involving direct association with

the crop plants themselves [3]. Current synthetic chemi-

cal pesticides have often been designed from natural

product lead structures or are themselves natural products

and, although they are in no way more benign than

synthetic pesticides, there are, in nature, genes for their

biosynthesis which could be exploited for delivery to

agriculture via crop or companion plants, or via industrial

crops. Production by the latter is not sustainable because

of the need for extraction and then application to the crop,

although on-farm extraction, or at least some processing,

could be employed where the necessary quality control

and safety can be achieved. Many crop plants incorporate

biosynthetic pathways to natural pesticides which could

be enhanced by breeding. Alternatively, pathways can be

added by genetic engineering, for example, for Bacillus
thuringiensis endotoxin production or with genes for entire

secondary pathways, for example, for toxic saponins such

as the avenacins [4��], including from other plants or

organisms entirely.

Pheromones and other semiochemicals have long been

regarded as presenting opportunities for pest management

and many biosynthetic pathways have been elucidated [5].

For semiochemicals, there is a further advantage in that

beneficial organisms can also be advantageously manipu-

lated [6]. Thus, semiochemicals that recruit predators and

parasitoids (parasites that kill their hosts), or in other ways

manage beneficial organisms, can be released by crop or

companion plants, thereby providing new approaches to

exploiting biological control of pests. Although biological

control is sustainable in the example of exotic release of

control agents, registration may not be granted because of

potential environmental impact, and inundative release

requires production and delivery. Therefore, managing the

process of conservation biological control, which exploits

natural populations of beneficial organisms, expands the

potential value of releasing semiochemicals from crops or

companion plants [7�]. Many semiochemicals are volatile,

for example those acting at a distance as attractants or

repellents. Also, in order that the signal does not remain in

the environment after use, these compounds are often

highly unstable chemically, which again promotes the

concept of release from plants.

From the attributes of a natural product pest control

agents, as described above, follows the concept of sti-

mulo-deterrent or push–pull [8] farming systems

(Figure 1). The main food crop is protected by negative
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Figure 1

Push-pull: the concept

Natural product pest control agents are, by definition, biosynthesised naturally.  The genes for semiochemical biosynthesis
expressed in companion plants, or in the crop plants themselves, give a “push” to pests and attract predators and parasitic
insects (e.g. parasitoids).  At the same time, companion plant genes associated with semiochemicals attractive to pests provide
a “pull”. Genes for toxicant biosynthesis can be expressed in the latter in order to reduce pest populations.

“Push”

Produce repellent semiochemicals against
the pest, for example (1) from non-host
taxa, e.g. organic isothiocyanates, typical
of brassicaceous crops, against non-
brassicaceous plant feeding pests; (2)
feeding stress related semiochemicals
that denote pest infestation and also
recruit predators and parasitoids.

Crop

Provided with attributes of “push” plants
via advanced breeding technologies or GM.

“Pull”

Produce attractant semiochemicals, e.g.
associated with host plants and effects
heightened by maximising these signals.

Produce toxicants enhanced from levels
produced in host plants, e.g. benzoxazinoids
in certain cereals or from non-host plants, e.g.
glucosinolates from brassicaceous plants.
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cues that reduce pest colonisation and development, that

is, the ‘‘push’’ effect. This is achieved either directly, by

modifying the crop, or by companion crops grown be-

tween the main crop rows. Ideally, the modified crop, or

the companion crop, also creates a means of exploiting

natural populations of beneficial organisms by releasing

semiochemicals that attract parasitoids or increase their

foraging. The ‘‘pull’’ involves trap plants grown, for

example, as a perimeter to the main crop and which

are attractive to the pest, for example by promoting

egg laying. Ideally, a population-reducing effect will be

generated by trap plants, such as incorporating a natural

pesticide, or some innate plant defence. Push–pull may

use processes, largely semiochemical based, each of

which, alone, will exert relatively weak pest control.

However, the integrated effect must be robust and effec-

tive. The combination of weaker effects also mitigates

against resistance to the overall system of pest control

because of its multi-genic nature and lack of strong

selection pressure by any single push–pull component.

Push–pull for smallholder cereal farming in
sub-Saharan Africa
Smallholder farmers in developing countries traditionally

use companion crops to augment staple crops such as

cereals. Development of the push–pull farming system

for these farmers employed the companion cropping

tradition in establishing an entry point for the new tech-

nology. ‘‘Push’’ and ‘‘pull’’ plants were identified initially

by empirical behavioural testing with lepidopteran

(moth) stem borer adults. Having begun experimental

farm trials in 1994 and moving on-farm in 1995, farmers

very swiftly adopted the most effective companion crops

[9,10] (Figure 2) and the benefits soon became apparent
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(Figure 3). The semiochemistry underpinning the roles of

the companion plants in this push–pull system was then

investigated by taking samples of volatiles released from

companion plants and analysing by gas chromatography,

coupled with electrophysiological recordings from the

moth antennae [11��]. In addition to well-known attrac-

tants from the trap plants (‘‘pull’’), including isoprenoidal

compounds such as linalool [9] and green leaf alcohols

from the oxidation of long chain unsaturated fatty acids,

other semiochemicals arising through the oxidative burst

caused by insect feeding offered negative cues for incom-

ing herbivores. These are isoprenoid hydrocarbons, for

example, (E)-ocimene and (1R,4E,9S)-caryophyllene,

and some more powerful negative cues, the homoter-

penes, that is, homo-isoprenoid, or more correctly, tetra-

nor-isoprenoid hydrocarbons [11��] (Figure 4). Most

importantly, these latter compounds also act as foraging

recruitment cues for predators and parasitoids of the pests

[11��], and molecular tools for investigating other activi-

ties are being developed [12��]. Technology transfer for

this push–pull system requires new approaches, and

although such transfer benefits by a tradition of compa-

nion cropping, training is required for extension services

and farmers, and availability of seed or other planting

material, although, being perennial, these companion

plants are one-off inputs. All the companion plants are

valuable forage for dairy (cow and goat) husbandry and

potentiate zero grazing, which is advantageous in the high

population density rural areas in which most of the

population live in sub-Saharan Africa. The legume inter-

crop plants, Desmodium spp., also fix nitrogen, with D.
uncinatum being able to add approximately 110 kgN/ha/yr

and contributing approximately 160 kg/ha/yr equivalent

of nitrogen fertilizer [13�]. Desmodium spp. intercrops also
www.sciencedirect.com
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Figure 2
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Conventional push–pull field showing maize intercropped with silverleaf desmodium (Desmodium uncinatum) and with Napier grass (Pennisetum

purpureum) planted as a border crop (left); climate-adapted push–pull field showing sorghum intercropped with drought tolerant greenleaf desmodium

(D. intortum) and Brachiaria cv mulato II as a border crop (right).
control parasitic striga weeds, for example, Striga her-
monthica [13�], via release of allelopathic C-glycosylated

flavonoids [14��], which represents another facet of

push–pull in providing weed control [15]. Overall, there

is a high take-up and retention in regions where the
Figure 3
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technology is transferred; for example, in western Kenya

in 2013, nearly 60,000 farmers are using these techniques

[16�]. Although this represents a very small percentage of

the millions of people who could benefit, so far there have

been very few resources for technology transfer. A recent
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Figure 4
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Potentially universal ‘‘push’’ semiochemicals, that is homoterpenes such as (E)-4,8-dimethyl-1,3,7-nonatriene, biosynthesised via cytochromes P450

from the higher homologue isoprenoid a-unsaturated secondary alcohols, for example, nerolidol, repel herbivorous insects and attract their parasitoids

[36��]. Attractants from ‘‘pull’’ plants include unsaturated fatty acid products such as (Z)-3-hexen-1-ol. Allelopathic compounds, for example, the di-C-

glycosylflavone isoschaftoside, protect the crop from antagonistic organisms such as parasitic weeds [14��].
EU-funded research initiative, ADOPT (‘‘Adaptation

and Dissemination Of the ‘Push–pull’ Technology’’),

has sought companion plants that can deal with drought,

a rapidly growing problem in sub-Saharan Africa as a

consequence of climate change, and new companion

crops have already been identified and taken up by

farmers [16�] (Figure 2).

The ‘‘push’’ plants imitate damaged crop plants, particu-

larly maize and sorghum which produce the homoter-

penes, and although normally too late to be of real value in

economic pest management, production of these com-

pounds is induced by the pest. Recently, we found that

this can also be caused by egg-laying, specifically on the

open pollinated varieties of maize normally grown by the

smallholder farmers [17�], but not on hybrids [11��]. An

egg-related elicitor enters the undamaged plant and the

signal travels systemically, thereby inducing defence and

causing release of the homoterpenes. Exploitation of this
Current Opinion in Biotechnology 2014, 26:125–132 
phenomenon (see later) will offer new approaches to

push–pull farming systems.

Biotechnological development of push–pull
for industrialised farming
New approaches to breeding by alien introgression of

genes from wide crosses, including from the wild ances-

tors of modern crops [18�], as well as incorporation of

heterologous gene incorporation by GM [19,20], genome

engineering [21–23] and creation of synthetic crop plants

by combining approaches including new crop genomic

information [24], can contribute to push–pull farming

systems. Mixed seed beds are now in use for cereals,

even in industrial agriculture, and push–pull could be

created without separated ‘‘push’’ and ‘‘pull’’ plants,

including regulated stature facilitating selective harvest-

ing. The new generation of GM and other biotechnolo-

gically derived crops [3] could revolutionise the prospects

for push–pull in industrialised farming systems by
www.sciencedirect.com
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offering crop plants that could themselves embody the

‘‘push’’ trait, thereby obviating the need for labour to

manage the intercrop.

Toxicants for population reduction

The expression of B. thuringiensis derived genes against

certain insect pests has been highly successful [25], but

we are now able to manipulate secondary metabolite

pathways to produce pesticides, related to the synthetic

versions, with a much greater range of activities, for

example, cyanogenic glycosides [26], glucosinolates

[27,28,29��] and avenacins [30]. The latter, and also the

benzoxazinoids (hydroxamic acids) [31–35], are bio-

synthesised by pathways involving a series of genes co-

located on plant genomes, potentially facilitating

enhancement or transfer to crop plants by GM [4��].
These pathways could be expressed in ‘‘pull’’ plants

for population control. They could also enhance the

‘‘push’’ effect. However, for both, attention must be

directed towards obviating interference with the ‘‘push’’

and ‘‘pull’’ mechanisms.

Repellents for pests and attractants for beneficials

Already, in sub-Saharan African push–pull, the value of

the homoterpenes can be seen [11��,17�]. Laboratory

studies have demonstrated the principle, more widely,

of enhancing production by GM [12��]. Biosynthesis of

both the alcohol precursors [36��] and the homoterpenes

has been demonstrated with, for the latter, Cyp82G1 being

the enzyme in the model plant Arabidopsis thaliana [37].

This is now being explored for insect control in rice

(BBSRC International Partnering Award BB/J02028/1

and the BBSRC China UK Programme in Global Priori-

ties BB/L001683/1).

Pheromones also offer opportunities and, after demon-

strating the principle in A. thaliana [38], the heterologous

expression of genes for the biosynthesis of (E)-b-farne-

sene, the alarm pheromone of many pest aphid species,

after success in the laboratory, is being field tested

(BBSRC grant BB/G004781/1, ‘‘A new generation of

insect resistant GM crops: transgenic wheat synthesising

the aphid alarm signal’’) as a means of repelling aphids

and attracting parasitoids to the crop. Nonetheless, as well

as overcoming the demanding issues of GM, these soph-

isticated signals will need to be presented in the same way

that the insects themselves do, which, for the aphid alarm

pheromone, is as a pulse of increased concentration.

Indeed, as well as demands of behavioural ecology, com-

plicated mixtures may also be necessary to provide the

complete semiochemical cue. However, it is already

proving possible to make relatively simple targeted

changes in individual components of mixtures [39], which

could allow an economic GM approach. The latter is

likely to become even more appealing with the devel-

opment of new technologies arising from genome editing

[21–23]. Genes for biosynthesis of the aphid sex
www.sciencedirect.com 
pheromone could be used to establish a powerful ‘‘pull’’

for the highly vulnerable overwintering population, but

would need to be isolated from the insects themselves so

as to avoid the presence of other plant-related compounds

that inhibit the activity of the pheromone. Recent dis-

coveries in plant biosynthesis of compounds related to

aphid sex pheromones [40] will facilitate this quest.

Attractant pheromones of moth (Lepidoptera) pests

may also become available as a consequence of attempts

to use GM plants as ‘‘factories’’ for biosynthesis (Christer

Löfstedt, Lund University, personal communication).

Induction of push–pull

A number of biosynthetic pathways to plant toxicants and

semiochemicals are subject to induction or priming

[41,42]. Elicitors can be generated by pest, disease or

weed development. Volicitin (N-(17-hydroxylinolenoyl-

L-glutamine)) [43–45] and related compounds produced

in the saliva of chewing insects induce both direct and

indirect defence, often involving the homoterpenes, but

require damage to transfer the signal to the plant. The

egg-derived elicitor (see above) [11��] should overcome

the problem. Plant-to-plant interactions mediated by

volatile compounds, for example, methyl jasmonate

and methyl salicylate, related to plant hormone stress

signalling, are associated with these effects and can

induce defence. However, there can be deleterious or

erratic effects in attempting to use such general pathways

[46]. cis-Jasmone signals differentially to jasmonate [47]

and, without phytotoxic effects, regulates defence, often

by induction of homoterpenes [48] in crops even without

genetic enhancement, for example, in wheat [49], soy

bean [50], cotton [51] and sweet peppers [52]. In addition

to aerially transmitted signals that could be used to induce

‘‘push’’ or ‘‘pull’’ effects, signalling within the rhizo-

sphere directly [53,54��], or via the mycelial network of

arbuscular mycorrhizal fungi [55��], is now showing excit-

ing promise. The ‘‘pull’’ effect can be enhanced by

raising the levels of inducible attractants, provided there

is no interference with the population controlling com-

ponents of the push–pull system. However, attractive

plants, without population control or with a late expressed

control, could be valuable as sentinel plants. Thus, highly

susceptible plants, either engineered or naturally suscept-

ible, could, on initial pest damage, release signals via the

air or rhizosphere that could, in turn, switch on defence in

the recipient main crop plants, creating elements of the

push–pull farming system as a fully inducible phenom-

enon activated without external intervention.

Conclusions
Push-pull is not only a sustainable farming system, but

can also protect the new generation of GM crops against

development of resistance by pests. Although consider-

able work still needs to be done for all the new tools of

biotechnology to be exploited in push–pull, agriculture

must sustainably produce more food on less land as it is
Current Opinion in Biotechnology 2014, 26:125–132
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lost through diversion to other uses and climate change,

and so presents an extremely important target for new

biotechnological studies.
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biological control of crop pests. Phil Trans R Soc B 2014. (in
press).

Plant strengthener is a generic term for several commercially available
compounds or mixtures of compounds that can be applied to cultivated
plants in order to ‘‘boost their vigour, resilience and performance’’.
Studies into the consequences of boosting plant resistance against pests
and diseases on plant volatiles have found a surprising and dramatic
increase in the plants’ attractiveness to parasitic wasps.
Current Opinion in Biotechnology 2014, 26:125–132 
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Babikova Z, Gilbert L, Bruce TJA, Birkett M, Caulfield JC,
Woodcock CM, Pickett JA, Johnson D: Underground signals
carried through common mycelial networks warn
neighbouring plants of aphid attack. Ecol Lett 2013, 16:835-843.

Common mycorrhizal mycelial networks can determine the outcome of
multitrophic interactions by communicating information on herbivore
attack between plants, thereby influencing the behaviour of both herbi-
vores and their natural enemies.
www.sciencedirect.com
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